Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Clin Oncol ; 29(5): 620-628, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38530569

RESUMEN

BACKGROUND: This subgroup analysis of a prospective phase II trial aimed to identify valuable and accessible prognostic factors for overall survival (OS) and progression-free survival (PFS) of patients with locally advanced cervical cancer (LACC). METHODS: Patients with FIGO II to IVA cervical cancer were assessed in this study. All patients underwent concurrent chemoradiotherapy (CCRT) followed by brachytherapy. Tumor parameters based on MRI scans before and during CCRT were evaluated for Overall survival (OS) and Progression-free survival (PFS). RESULTS: A total of 86 patients were included in this analysis with a median follow-up period of 31.7 months. Three-year OS and PFS rates for all patients were 87.1% and 76.5%, respectively. Univariate Cox regression analysis showed that restaging tumor size (rTS) over 2.55 cm (p < 0.001), initial tumor volume (iTV) over 55.99 cc (p < 0.001), downstaging (p = 0.042), and restaging tumor volume (rTV) over 6.25 cc (p = 0.006) were significantly associated with OS. rTS (p < 0.001), iTV (p < 0.001), downstaging (p = 0.027), and rTV (p < 0.001) were identified as significant prognostic factors for PFS. In the stepwise multivariable analysis, only rTS > 2.55 cm showed statistically significant with OS (HR: 5.47, 95% CI 1.80-9.58, p = 0.035) and PFS (HR: 3.83, 95% CI 1.50-11.45; p = 0.025). CONCLUSIONS: Initial tumor size and restaging tumor volume that are easily accessible during radiotherapy provide valuable prognostic information for cervical cancer. MRI-based measurable volumetric scoring system can be readily applied in real-world practice of cervical cancer. CLINICAL TRIAL INFORMATION: This study is a subgroup analysis of prospective trial registered at ClinicalTrials.gov Identifier: NCT02993653.


Asunto(s)
Quimioradioterapia , Imagen por Resonancia Magnética , Recurrencia Local de Neoplasia , Neoplasias del Cuello Uterino , Humanos , Femenino , Neoplasias del Cuello Uterino/terapia , Neoplasias del Cuello Uterino/patología , Neoplasias del Cuello Uterino/mortalidad , Neoplasias del Cuello Uterino/diagnóstico por imagen , Persona de Mediana Edad , Quimioradioterapia/métodos , Imagen por Resonancia Magnética/métodos , Adulto , Estudios Prospectivos , Recurrencia Local de Neoplasia/patología , Anciano , Pronóstico , Carga Tumoral , Braquiterapia , Estadificación de Neoplasias , Supervivencia sin Progresión
2.
Int J Mol Sci ; 23(22)2022 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-36430971

RESUMEN

The whole genome sequence of Lactiplantibacillus plantarum DJF10, isolated from Korean raw milk, is reported, along with its genomic analysis of probiotics and safety features. The genome consists of 29 contigs with a total length of 3,385,113 bp and a GC content of 44.3%. The average nucleotide identity and whole genome phylogenetic analysis showed the strain belongs to Lactiplantibacillus plantarum with 99% identity. Genome annotation using Prokka predicted a total of 3235 genes, including 3168 protein-coding sequences (CDS), 59 tRNAs, 7 rRNAs and 1 tmRNA. The functional annotation results by EggNOG and KEGG showed a high number of genes associated with genetic information and processing, transport and metabolism, suggesting the strain's ability to adapt to several environments. Various genes conferring probiotic characteristics, including genes related to stress adaptation to the gastrointestinal tract, biosynthesis of vitamins, cell adhesion and production of bacteriocins, were identified. The CAZyme analysis detected 98 genes distributed under five CAZymes classes. In addition, several genes encoding carbohydrate transport and metabolism were identified. The genome also revealed the presence of insertion sequences, genomic islands, phage regions, CRISPR-cas regions, and the absence of virulence and toxin genes. However, the presence of hemolysin and antibiotic-resistance-related genes detected in the KEGG search needs further experimental validation to confirm the safety of the strain. The presence of two bacteriocin clusters, sactipeptide and plantaricin J, as detected by the BAGEL 4 webserver, confer the higher antimicrobial potential of DJF10. Altogether, the analyses in this study performed highlight this strain's functional characteristics. However, further in vitro and in vivo studies are required on the safety assurance and potential application of L. plantarum DJF10 as a probiotic agent.


Asunto(s)
Bacteriocinas , Lactobacillus plantarum , Animales , Lactobacillus plantarum/metabolismo , Genoma Bacteriano , Filogenia , Leche , Bacteriocinas/metabolismo , Antibacterianos/metabolismo , República de Corea
3.
ACS Appl Mater Interfaces ; 13(45): 53935-53944, 2021 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-34698486

RESUMEN

Thermoelectric generators (TEGs) exploiting the Seebeck effect provide a promising solution for waste heat recovery. Among the large number of thermoelectric (TE) materials, half-Heusler (hH) alloys are leading candidates for medium- to high-temperature power generation applications. However, the fundamental challenge in this field has been inhomogeneous material properties at large wafer diameters, insufficient power output from the modules, and rigid form factors of TE modules. This has restricted the transition of TEGs in practical applications for over three decades. Here, we successfully demonstrate large diameter wafers with uniform TE properties, high-power conformal hH TE modules for high-temperature application, and their direct integration on flue gas platforms, such as cylindrical tubes, to form large area flexible TEGs. This new conformal architecture design provides a breakthrough toward medium-/high-temperature TEGs over the conventional BiTe- and polymer-based flexible TEG design. A variable fill factor and greater flexibility due to the conformal design result in higher device performance as compared to conventional rigid TEG devices. Modules with 72-couple hH legs exhibit a device high-power-density of 3.13 W cm-2 and a total output power of 56.6 W under a temperature difference of 570 °C. These results provide a promising pathway toward widespread utilization of thermoelectric technology into the waste heat recovery application and will have a significant impact on the development of practical thermal to electrical converters.

4.
Metabolites ; 11(6)2021 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-34063928

RESUMEN

Geographical origin and authenticity are the two crucial factors that propel overall cheese perception in terms of quality and price; therefore, they are of great importance to consumers and commercial cheese producers. Herein, we demonstrate a rapid, accurate method for discrimination of domestic and import mozzarella cheeses in the Republic of Korea by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). The protein profiles' data aided by multivariate statistical analysis successfully differentiated farmstead and import mozzarella cheeses according to their geographical location of origin. A similar investigation within domestic samples (farmsteads/companies) also showed clear discrimination regarding the producer. Using the biomarker discovery tool, we identified seven distinct proteins, of which two (m/z 7407.8 and 11,416.6) were specific in farmstead cheeses, acting as potential markers to ensure authentication and traceability. The outcome of this study can be a good resource in building a database for Korean domestic cheeses. This study also emphasizes the combined utility of MALDI-TOF MS and multivariate analysis in preventing fraudulent practices, thereby ensuring market protection for Korean farmstead cheeses.

5.
Metabolites ; 11(1)2021 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-33406794

RESUMEN

To evaluate the safety and risk assessment of cheese consumption in the Republic of Korea, sixty cheese samples purchased from the farmstead and retails markets (imported) were analyzed for their biogenic amine (BA) contents. The BA profiles and quantities of eight amines (tryptamine, 2-phenylethylamine, putrescine, cadaverine, histamine, tyramine, spermidine, and spermine) were determined using high-performance liquid chromatography (HPLC). Spermine was the only amine detectable in all the samples. The BAs of fresh cheeses from both farmstead and retail markets were mostly undetectable, and comparatively at lower levels (<125 mg/kg) than ripened samples. Putrescine was undetectable in all the domestic ripened cheeses. The sum of BA levels in the imported ripened cheeses of Pecorino Romano (1889.75 mg/kg) and Grana Padano (1237.80 mg/kg) exceeds >1000 mg/kg, of which histamine accounts nearly 86 and 77% of the total levels, respectively. The tolerable limits of the potential toxic amines, histamine and tyramine surpassed in four and three imported ripened samples, respectively. Furthermore, the presence of potentiators (putrescine and cadaverine) together in samples even with a lower level of toxic amines alarms the risk in consumption. Therefore, adoption of strict hygienic practices during the entire chain of cheese production, along with obligatory monitoring and regulation of BA in cheeses seems to be mandatory to ensure the safety of the consumers.

6.
ACS Appl Mater Interfaces ; 12(32): 36706-36714, 2020 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-32672927

RESUMEN

High temperature waste heat recovery has gained tremendous interest to generate useful electricity while reducing the harmful impact on the environment. Thermoelectric (TE) solid-state materials enable direct conversion of heat into electricity with high efficiency, thereby offering a practical solution for waste heat recovery. Half-Heusler (hH) alloys are the leading TE materials for medium to high temperature applications, as they exhibit a high figure of merit and mechanical strength at temperatures as high as 973 K. Here we investigate the most promising hH alloys represented as MNiSn, MCoSb, and NbFeSb systems (M = Hf, Zr, and Ti) and provide fundamental understanding of their in-air thermal stability at high temperatures under realistic operating conditions required for energy generation. The understanding of oxidation resistance of TE materials is crucial for their practical deployment in extreme environments without vacuum sealing. The n-type MNiSn and p-type NbFeSb compounds are found to exhibit excellent oxidation resistance at a high temperature of 873 K. The oxidation resistance is enhanced through the presence of an intermetallic Ni-Sn layer for MNiSn and Nb-TiO2 double layer for (Nb,Ti)FeSb. A unicouple thermoelectric generator (TEG) fabricated from thermally stable materials demonstrated consistent performance for more than 150 h at 873 K in air. These results demonstrate the significance of TE materials in waste heat recovery systems.

7.
iScience ; 23(7): 101340, 2020 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-32688286

RESUMEN

Thermoelectric generators (TEGs) offer cost-effective and sustainable solid-state energy conversion mechanism from wasted heat into useful electrical power. Thermoelectric (TE) materials based upon bismuth telluride (BiTe) systems are widely utilized in applications ranging from energy generation to sensing to cooling. There is demand for BiTe materials with high figure of merit (zT) and TEG modules with high conversion efficiency over intermediate temperatures (25°C-250°C). Here we provide fundamental breakthrough in design of BiTe-based TE materials and utilize them to demonstrate modules with outstanding conversion efficiency of 8%, which is 40% higher compared with state-of-the-art commercial modules. The average zT of 1.08 for p-type and 0.84 for n-type bismuth telluride alloys is obtained between 25 and 250°C. The significant enhancement in zT is achieved through compositional and defect engineering in both p- and n-type materials. The high conversion efficiency accelerates the transition of TEGs for waste heat recovery.

8.
Saudi J Biol Sci ; 27(6): 1446-1461, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32489280

RESUMEN

In this study, the 1H HRMAS-NMR (High-resolution Magic Angle Spinning-Nuclear Magnetic Resonance) spectra of 52 cheese samples obtained from the South Korean dairy farms were evaluated for their metabolic profiling and intensities associating with the sensory qualities. The NMR profiles displayed a broad range of compounds comprising amino acids, carbohydrates, organic acids, and phospholipids. Afterwards, the cheese samples were categorized into three groups (more likeness - G1, moderate likeness - G2, less likeness - G3), in relating to their sensory scores. The NMR data of the samples were later investigated through multivariate statistical tools to define the variations in metabolic fingerprints of every cheese sample and their intensities hailing in individual sensory groups. The unsupervised PCA employing all cheese samples unveiled the uniqueness in metabolite profiles of the brown and cheddar type cheeses (outliers). Moreover, Gouda and other types of cheeses displayed samples positioning in respective of their metabolite profiles. The pairwise comparison of sensory groups in the supervised models perceived better separation in OPLS-DA than PLS-DA. The corresponding VIP (PLS-DA) and loading (OPLS-DA) plots revealed amino acids and organic acids (lactate, citrate) as significant variables. The discrimination of G 1 Gouda type of cheeses against G 2 and G 3 was highly associated with their citrate levels. Further investigation using heatmaps displayed clear differentiation between each sensory group in terms of the levels of amino acids, lactate, citrate, phospholipids, and glycerol, conveying these variations are likely due to proteolytic and metabolic processes in cheese ripening. This study concluded that 1H HRMAS-NMR metabolite profile of the Korean cheeses is consistence with their sensory qualities. Further, the candidate metabolites identified in this study confers their potential application as biomarkers in cheese industries for faster and effective validation of sensory characteristics.

9.
Asian-Australas J Anim Sci ; 33(6): 1002-1011, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32054221

RESUMEN

OBJECTIVE: This study was conducted to determine the composition and diversity of the fungal flora at various control points in cheese ripening rooms of 10 dairy farms from six different provinces in the Republic of Korea. METHODS: Floor, wall, cheese board, room air, cheese rind and core were sampled from cheese ripening rooms of ten different dairy farms. The molds were enumerated using YM petrifilm, while isolation was done on yeast extract glucose chloramphenicol agar plates. Morphologically distinct isolates were identified using sequencing of internal transcribed spacer region. RESULTS: The fungal counts in 8 out of 10 dairy farms were out of acceptable range, as per hazard analysis critical control point regulation. A total of 986 fungal isolates identified and assigned to the phyla Ascomycota (14 genera) and Basidiomycota (3 genera). Of these Penicillium, Aspergillus, and Cladosporium were the most diverse and predominant. The cheese ripening rooms was overrepresented in 9 farms by Penicillium (76%), while Aspergillusin a single farm. Among 39 species, the prominent members were Penicillium commune, P. oxalicum, P. echinulatum, and Aspergillus versicolor. Most of the mold species detected on surfaces were the same found in the indoor air of cheese ripening rooms. CONCLUSION: The environment of cheese ripening rooms persuades a favourable niche for mold growth. The fungal diversity in the dairy farms were greatly influenced by several factors (exterior atmosphere, working personnel etc.,) and their proportion varied from one to another. Proper management of hygienic and production practices and air filtration system would be effective to eradicate contamination in cheese processing industries.

10.
Chem Commun (Camb) ; 55(89): 13350-13353, 2019 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-31599275

RESUMEN

Ultrasmall and uniform tetrahedral-shaped YOF:Yb,Er upconversion nanophosphors (UCNs) are synthesized and sub-10 nm YOF:Yb,Er/YOF core/shell UCNs are formed via YOF:Yb,Er seed-mediated synthesis. The ultrasmall YOF:Yb,Er/YOF core/shell UCNs realize intense red emission under near infrared light (λex = 980 nm).

11.
ACS Appl Mater Interfaces ; 11(45): 42131-42138, 2019 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-31617993

RESUMEN

Cd doping and metallic Ag additives in Ca3Co4O9+δ polycrystalline materials are shown to result in improved thermoelectric (TE) transport properties. Carrier concentration and mobility were optimized through the combination of doping and compositional modulation approaches. The formation of filiform Ag nanoinclusions between the interlayers and grain boundaries enhances the anisotropic carrier transport, leading to higher carrier mobility. A spin entropy enhancement due to the change of the net valence of Co induced by Cd substitution on the Ca site was confirmed by X-ray photoelectron spectroscopy. High carrier mobility and enhanced spin entropy results in higher electrical conductivity and Seebeck coefficient, leading to the increase of the power factor. In conjunction, mass fluctuation between Cd and Ca on the same crystal site along with the increase of metallic Ag nanoinclusions effectively lowers thermal conductivity. Consequently, the figure-of-merit, zT, has been improved to 0.31 at 950 K for 10 wt % Ag-modified Ca2.9Cd0.1Co4O9+δ specimen, which is a significant improvement compared to the pristine material. This dual-mode control of electron and phonon transport by including Ag additives and Cd doping offers an approach for tuning the correlated TE parameters.

12.
Food Sci Anim Resour ; 39(4): 601-609, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31508590

RESUMEN

Bifidobacterium longum KACC 91563 secretes family 5 extracellular solute-binding protein via extracellular vesicle. In our previous work, it was demonstrated that the protein effectively alleviated food allergy symptoms via mast cell specific apoptosis, and it has revealed a therapeutic potential of this protein in allergy treatment. In the present study, we cloned the gene encoding extracellular solute-binding protein of the strain into the histidine-tagged pET-28a(+) vector and transformed the resulting plasmid into the Escherichia coli strain BL21 (DE3). The histidine-tagged extracellular solute-binding protein expressed in the transformed cells was purified using Ni-NTA affinity column. To enhance the efficiency of the protein purification, three parameters were optimized; the host bacterial strain, the culturing and induction temperature, and the purification protocol. After the process, two liters of transformed culture produced 7.15 mg of the recombinant proteins. This is the first study describing the production of extracellular solute-binding protein of probiotic bacteria. Establishment of large-scale production strategy for the protein will further contribute to the development of functional foods and potential alternative treatments for allergies.

13.
Korean J Food Sci Anim Resour ; 38(5): 981-994, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30479505

RESUMEN

The present study aimed at evaluating the utilization possibility of encapsulated probiotic Bifidobacterium longum for production of functional fermented sausages. The B. longum isolated from the feces samples of healthy Korean infants encapsulated with glycerol as a cryprotectant was used for fermented sausages production as a functional bacterial ingredient, and its effect was also compared with those inoculated with commercial starter culture (CSC). Results showed that most inoculated encapsulated B. longum (initial count, 5.88 Log CFU/g) could survive after 4 days fermentation (5.40 Log CFU/g), and approximately a half (2.83 Log CFU/g) of them survived in the products after 22 days of ripening. The products inoculated with encapsulated B. longum presented the lowest lipid oxidation level, while had higher total unsaturated fatty acid content and more desirable n-6/n-3 fatty acids than those inoculated with CSC or non-inoculated control. Moreover, the odor and taste scores in the samples made with B. longum were comparable to those in the treatment with CSC. The inoculation with the B. longum had no effects on the biogenic amine contents as well as did not cause defects in color or texture of the final products. Thus, the encapsulation could preserve the probiotic B. longum in the meat mixture, and the encapsulated B. longum could be used as a functional ingredient for production of healthier fermented meat products.

14.
Nano Lett ; 18(5): 2835-2843, 2018 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-29613808

RESUMEN

Heteroepitaxial magnetoelectric (ME) composites are promising for the development of a new generation of multifunctional devices, such as sensors, tunable electronics, and energy harvesters. However, challenge remains in realizing practical epitaxial composite materials, mainly due to the interfacial lattice misfit strain between magnetostrictive and piezoelectric phases and strong substrate clamping that reduces the strain-mediated ME coupling. Here, we demonstrate a nonstrain-mediated ME coupling in PbZr0.52Ti0.48O3 (PZT)/La0.67Sr0.33MnO3 (LSMO) heteroepitaxial composites that resolves these challenges, thereby, providing a giant magnetodielectric (MD) response of ∼27% at 310 K. The factors driving the magnitude of the MD response were found to be the magnetoresistance-coupled dielectric dispersion and piezoelectric strain-mediated modulation of magnetic moment. Building upon this giant MD response, we demonstrate a magnetic field sensor architecture exhibiting a high sensitivity of 54.7 pF/T and desirable linearity with respect to the applied external magnetic field. The demonstrated technique provides a new mechanism for detecting magnetic fields based upon the MD effect.

15.
ACS Appl Mater Interfaces ; 10(13): 10796-10803, 2018 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-29473409

RESUMEN

We demonstrate a thermo-magneto-electric generator (TMEG) based on second-order phase transition of soft magnetic materials that provides a promising pathway for scavenging low-grade heat. It takes advantage of the cyclic magnetic forces of attraction and repulsion arising through ferromagnetic-to-paramagnetic phase transition to create mechanical vibrations that are converted into electricity through piezoelectric benders. To enhance the mechanical vibration frequency and thereby the output power of the TMEG, we utilize the nonlinear behavior of piezoelectric cantilevers and enhanced thermal transport through silver (Ag) nanoparticles (NPs) applied on the surface of a soft magnet. This results in large enhancement of the oscillation frequency reaching up to 9 Hz (300% higher compared with that of the prior literature). Optimization of the piezoelectric beam and Ag NP distribution resulted in the realization of nonlinear TMEGs that can generate a high output power of 80 µW across the load resistance of 0.91 MΩ, which is 2200% higher compared with that of the linear TMEG. Using a nonlinear TMEG, we fabricated and evaluated self-powered temperature-mapping sensors for monitoring the thermal variations across the surface. Combined, our results demonstrate that nonlinear TMEGs can provide additional functionality including temperature monitoring, thermal mapping, and powering sensor nodes.

16.
Sci Rep ; 7: 41383, 2017 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-28145516

RESUMEN

Continued emphasis on development of thermal cooling systems is being placed that can cycle low grade heat. Examples include solar powered unmanned aerial vehicles (UAVs) and data storage servers. The power efficiency of solar module degrades at elevated temperature, thereby, necessitating the need for heat extraction system. Similarly, data centres in wireless computing system are facing increasing efficiency challenges due to high power consumption associated with managing the waste heat. We provide breakthrough in addressing these problems by developing thermo-magneto-electric generator (TMEG) arrays, composed of soft magnet and piezoelectric polyvinylidene difluoride (PVDF) cantilever. TMEG can serve dual role of extracting the waste heat and converting it into useable electricity. Near room temperature second-order magnetic phase transition in soft magnetic material, gadolinium, was employed to obtain mechanical vibrations on the PVDF cantilever under small thermal gradient. TMEGs were shown to achieve high vibration frequency at small temperature gradients, thereby, demonstrating effective heat transfer.

17.
ACS Appl Mater Interfaces ; 6(13): 10576-82, 2014 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-24919853

RESUMEN

Enhanced piezoelectric and energy-harvesting characteristics of Mn-doped (Na0.5K0.5)NbO3 (NKN) nanofibers have been investigated with actual fabrication of potential flexible nanogenerators. The electrospinning process of nanofibers has been initially optimized with the proper level of chelating agent and annealing temperature. High quality nanofibers are successfully obtained only by means of a certain level of doped-Mn, which incorporates into the NKN perovskite structure and facilitates significant grain growth. A single-particle-stacked structure along the direction of fiber length becomes more evident with increasing Mn content. An XPS analysis confirms that Mn exists in multivalent states of Mn(2+)/Mn(3+). The effective piezoelectric coefficient of the nanofibers is found to be enhanced by 5 times with Mn-doping up to 3 mol % as characterized by piezoelectric force microscopy. The resultant flexible nanogenerators on PES films have exhibited ∼0.3 V output voltage and ∼50 nA output current under a bending strain.

18.
Br J Pharmacol ; 165(6): 1926-1940, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21913901

RESUMEN

BACKGROUND AND PURPOSE: We previously reported that 3-(benzo[d]-1,3-dioxol-5-yl)-4-phenylfuran-2,5-dione (BPD) showed strong inhibitory effects on PGE(2) production. However, the exact mechanism for the anti-inflammatory effect of BPD is not completely understood. In this study, we investigated the molecular mechanism involved in the effects of BPD on inflammatory mediators in LPS-stimulated macrophages and animal models of inflammation. EXPERIMENTAL APPROACH: The expressions of COX-2, inducible NOS (iNOS), TNF-α, IL-6 and IL-1ß, in LPS-stimulated RAW 264.7 cells and murine peritoneal macrophages, were determined by Western blot and/or qRT-PCR, respectively. NF-κB activation was investigated by EMSA, reporter gene assay and Western blotting. Anti-inflammatory effects of BPD were evaluated in vivo in carrageenan-induced paw oedema in rats and LPS-induced septic shock in mice. KEY RESULTS: BPD not only inhibited COX-2 activity but also reduced the expression of COX-2. In addition, BPD inhibited the expression of iNOS, TNF-α, IL-6 and IL-1ß at the transcriptional level. BPD attenuated LPS-induced DNA-binding activity and the transcription activity of NF-κB; this was associated with a decrease in the phosphorylation level of inhibitory κB-α (IκB-α) and reduced nuclear translocation of NF-κB. Furthermore, BPD suppressed the formation of TGF-ß-activated kinase-1 (TAK1)/TAK-binding protein1 (TAB1), which was accompanied by a parallel reduction of phosphorylation of TAK1 and IκB kinase (IKK). Pretreatment with BPD inhibited carrageenan-induced paw oedema and LPS-induced septic death. CONCLUSION AND IMPLICATIONS: Taken together, our data indicate that BPD is involved in the dual inhibition of COX-2 activity and TAK1-NF-κB pathway, providing a molecular basis for the anti-inflammatory properties of BPD.


Asunto(s)
Benzodioxoles/uso terapéutico , Inhibidores de la Ciclooxigenasa 2/uso terapéutico , Inflamación/tratamiento farmacológico , Anhídridos Maleicos/uso terapéutico , FN-kappa B/metabolismo , Animales , Benzodioxoles/farmacología , Carragenina , Línea Celular , Ciclooxigenasa 2/genética , Ciclooxigenasa 2/metabolismo , Inhibidores de la Ciclooxigenasa 2/farmacología , Citocinas/genética , Dinoprostona/metabolismo , Edema/inducido químicamente , Edema/tratamiento farmacológico , Edema/metabolismo , Edema/patología , Expresión Génica/efectos de los fármacos , Proteínas I-kappa B/metabolismo , Inflamación/inducido químicamente , Inflamación/metabolismo , Inflamación/patología , Lipopolisacáridos , Quinasas Quinasa Quinasa PAM/metabolismo , Macrófagos Peritoneales/efectos de los fármacos , Macrófagos Peritoneales/metabolismo , Masculino , Anhídridos Maleicos/farmacología , Ratones , Ratones Endogámicos C57BL , Inhibidor NF-kappaB alfa , Peroxidasa/metabolismo , Ratas , Ratas Sprague-Dawley , Sepsis/inducido químicamente , Sepsis/tratamiento farmacológico , Factor de Transcripción AP-1/metabolismo
19.
Bioorg Med Chem Lett ; 22(2): 1198-201, 2012 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-22177784

RESUMEN

An extension of our previously reported 3,4-dihydroquinazoline derivative is investigated. Oral anti-tumoral activity of 3,4-dihydroquinazoline derivative (KYS05090) as potent and selective T-type calcium channel blocker was in vivo evaluated against A549 xenograft in BALB/c(nu/nu) nude mice. The rate of tumor volume increment in mouse model with KYS05090-treated group was remarkably slower than that of control group. With respect to tumor weight, it exhibited 60% and 67% tumor growth inhibition through oral administration of 1 and 5mg/kg of bodyweight, respectively, compared to control and was more potent than paclitaxel (53%). In addition, KYS05090 (10 and 50mg/kg, po) was found to have a marked analgesic effect in acetic acid-induced writhing test, whereas it did not show any effect on hot plate test.


Asunto(s)
Antineoplásicos/farmacología , Neoplasias/tratamiento farmacológico , Quinazolinas/farmacología , Administración Oral , Animales , Antineoplásicos/administración & dosificación , Antineoplásicos/química , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Humanos , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos ICR , Ratones Desnudos , Estructura Molecular , Neoplasias/patología , Quinazolinas/administración & dosificación , Quinazolinas/química , Relación Estructura-Actividad , Ensayos Antitumor por Modelo de Xenoinjerto
20.
Bioorg Med Chem Lett ; 20(22): 6633-6, 2010 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-20884207

RESUMEN

In the previous article we have reported that 3,4-dihydroquinazoline 1 is a potent and selective T-type calcium channel blocker that exhibited strong anti-cancer activity in vitro. Compound 1·2HCl was further in vivo evaluated against A549 xenograft in BALB/c nude mice, which exhibited 49% tumor-weight inhibition through intravenous administration of 2 mg/kg of body weight and was more potent than doxorubicin. Moreover, compound 1·2HCl has an oral bioavailability of 98% with LD(50) values of 693 mg/kg (p.o. route) and 40.0 mg/kg (i.v. route) of body weight. In addition, its efficient scale-up synthetic method was developed.


Asunto(s)
Antineoplásicos/farmacología , Quinazolinas/farmacología , Animales , Línea Celular Tumoral , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Dosificación Letal Mediana , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Trasplante Heterólogo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...